Maths for CS Tutorial 1

- 1. Think of some sentences that are neither questions nor instructions, but still not propositions.
- 2. Determine the truth value of the following statements.
 - a) If 1 + 1 = 2, then 2 + 2 = 5.
 - b) If 1 + 1 = 2, then dogs can fly.
 - c) If 1 + 1 = 3, then unicorns exist.
- 3. State the converse, contrapositive, and inverse of each of these conditional statements.
 - a) I come to class if there is going to be a quiz.
 - b) A positive integer is a prime only if it has no divisors other than 1 and itself.
- 4. Construct a truth table for the following statements.
 - a) $(p \rightarrow q) \rightarrow (q \rightarrow p)$
 - b) $(\neg p \leftrightarrow \neg q) \leftrightarrow (p \leftrightarrow q)$
- 5. An ancient Sicilian legend says that the barber in a remote town who can be reached only by traveling a dangerous mountain road shaves those people, and only those people, who do not shave themselves. Can there be such a barber?
- 6. Construct a compound proposition that corresponds to exclusive OR.
- 7. An island has two kinds of inhabitants, knights, who always tell the truth, and their opposites, knaves, who always lie. You encounter two people A and B. What are A and B if A says "B is a knight" and B says "The two of us are opposite types?"
- 8. Determine whether the following statements are tautology, contradiction or contingency
 - a) $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$
 - $\mathbf{b})\,(p\vee q)\wedge(\neg p\vee r)\to(q\vee r)$
- 9. Determine whether following pairs of propositions are logically equivalent.
 - a) $(p \rightarrow q) \rightarrow r$ and $p \rightarrow (q \rightarrow r)$
 - b) $p \leftrightarrow q$ and $\neg p \leftrightarrow \neg q$